TOYOPEARL MX-Trp-650M
The role of Mixed-Mode Chromatography in Process Purification

Multimodal or mixed-mode chromatography resins are based on media that have been functionalized with ligands inherently capable of several different types of interaction: ion exchange, affinity, size exclusion, and hydrophobic. The ability to merge and take advantage of these modes of protein separations can enhance overall selectivity in a purification process. This enhanced selectivity can be used to remove process impurities in a single column step that would otherwise require multiple processing steps to remove. Mixed-mode resins are in effect an amalgamation of complementary approaches to chromatographic separation on a single platform.

Unlike monomodal chromatographic methods where molecules are separated based on a single characteristic (activity, charge, hydrophobicity), with mixed-mode chromatography and mixed-mode ligands there is no known single specific interaction between the ligand and the molecule of interest. As such, screening mixed-mode resins becomes an exploration for sites on the target molecule that will deliver suitable selectivity and capacity. It is recommended that chromatographers screen for pH and conductivity as well as loading conditions when optimizing a purification process that incorporates mixed-mode resins. Protein-ligand interactions are not independent of one another on mixed-mode resins. For example, when using a mixed-mode resin having both hydrophobic interaction and ion exchange components, increasing conductivity will interrupt ionic bonds while at the same time enhancing any hydrophobic interactions. Because multiple dependent and independent variables are involved in using mixed-mode chromatography, the use of Design-of-Experiments (DoE) is recommended to characterize and optimize chromatographic conditions.

TOYOPEARL Mixed-Mode Chromatography Resin

TOYOPEARL MX-Trp-650M resin is a functionalized version of the TOYOPEARL HW size exclusion resin and is therefore based on a hydroxyated polymethacrylic polymer bead. Tosoh Bioscience offers one mixed-mode ligand, the amino acid tryptophan, which has both indole hydrophobic and weak carboxyl cationic functional groups (Figure 1).

The semi-rigid polymeric backbone of TOYOPEARL MX-Trp-650M permits high flow rates for maximum throughput and productivity. This mixed-mode resin may be operated at pressures up to 0.3 MPa and is chemically stable from pH 3-13. This allows a constant packing volume over a wide range of salt concentrations and cleaning in place (CIP) with acid or base. As shown in Figure 2, TOYOPEARL MX-Trp-650M has excellent stability to 0.5 mol/L NaOH and can be run for many CIP cycles without decreasing dynamic binding capacity (DBC).

Table 1: Properties of TOYOPEARL MX-Trp-650M resin

<table>
<thead>
<tr>
<th>TOYOPEARL resin</th>
<th>Functionality</th>
<th>Base bead</th>
<th>Pore size</th>
<th>Bead diameter</th>
<th>Ligand type</th>
<th>Ligand pKa (-CO₂H)*</th>
<th>DBC (g/L)</th>
<th>Pressure rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX-Trp-650M</td>
<td>cationic/HIC</td>
<td>HW-85</td>
<td>100 nm</td>
<td>75 µm</td>
<td>HIC/weak cation</td>
<td>2.38</td>
<td>90 - 100</td>
<td>0.3 MPa</td>
</tr>
</tbody>
</table>

*Ligand pKa value is the pKa of the α-carboxyl group on the amino acid itself.
TOYOPEARL MX-Trp-650M is a high capacity mixed-mode resin used for the purification of monoclonal antibodies and other proteins. The multimodal resin maintains DBC at elevated feedstock or buffer conductivities (Figure 3). Table 2 shows the DBC of TOYOPEARL MX-Trp-650M at two feedstock conductivities: 12 mS/cm and 17 mS/cm. For comparison purposes, data for an agarose based resin is also shown. For the 12 mS/cm and 17 mS/cm measurements, the TOYOPEARL MX-Trp-650M resin shows almost 7x higher and 4x higher DBC, respectively, than the agarose based resin. Superior product recovery over the agarose based resin is also demonstrated in Table 3.

Table 2: Dynamic binding capacities at high conductivities

<table>
<thead>
<tr>
<th>Resin</th>
<th>Particle size (µm)</th>
<th>Ion exchange capacity (meq)</th>
<th>DBC (g/L)</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOYOPEARL MX-Trp-650M</td>
<td>50 - 100</td>
<td>0.12</td>
<td>95</td>
<td>97</td>
</tr>
<tr>
<td>TOYOPEARL MX-Trp-650M</td>
<td>50 - 100</td>
<td>0.12</td>
<td>48</td>
<td>96</td>
</tr>
<tr>
<td>Brand M (Agarose 12 mS/cm)</td>
<td>75 (median)</td>
<td>0.24</td>
<td>14</td>
<td>86</td>
</tr>
<tr>
<td>Brand M (Agarose 17 mS/cm)</td>
<td>75 (median)</td>
<td>0.24</td>
<td>11</td>
<td>85</td>
</tr>
</tbody>
</table>

Resins: TOYOPEARL MX-Trp-650M
Column: 6 mm ID × 4 cm
Mobile phase: Buffer (12 mS/cm): 0.05 mol/L acetate buffer, pH 4.3, 4.7, 5.0 + 0.10 mol/L NaCl, Buffer (17 mS/cm): 0.05 mol/L acetate buffer, pH 4.3, 4.7, 5.0 + 0.15 mol/L NaCl
Flow rate: 212 cm/hr (1.0 mL/min)
Detection: UV @ 280 nm
Sample: human polyclonal IgG (1 mg/mL)

Dynamic binding capacity (DBC) calculated from 10% height of breakthrough curve.

Table 3: Recovery comparison at conductivities of 12 and 17 mS/cm

<table>
<thead>
<tr>
<th>Resin</th>
<th>IgG DBC 12 mS/cm</th>
<th>Recovery %</th>
<th>IgG DBC 17 mS/cm</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOYOPEARL MX-Trp-650M</td>
<td>95</td>
<td>97%</td>
<td>48</td>
<td>96%</td>
</tr>
<tr>
<td>Capto MMC</td>
<td>14</td>
<td>86%</td>
<td>11</td>
<td>85%</td>
</tr>
</tbody>
</table>

Resins: TOYOPEARL MX-Trp-650M
Column: 6 mm ID × 4 cm
Mobile phase: Buffer (12 mS/cm): 0.05 mol/L acetate buffer, pH 4.7 + 0.1 mol/L NaCl, Buffer (17 mS/cm): 0.05 mol/L acetate buffer, pH 4.7 + 0.15 mol/L NaCl
Flow rate: 212 cm/hr (1.0 mL/min)
Detection: UV @ 280 nm
Sample: polyclonal IgG
The mass transfer properties of a resin influence the economics of the loading and elution stages of a capture step and the degree of resolution for intermediate purification. Good mass transfer kinetics enables the resin to maintain its DBC at increased linear velocities (Figure 4). In keeping with the exceptional target binding and eluting properties of TOYOPEARL GigaCap ion exchange resins, TOYOPEARL MX-Trp-650M also shows a narrow elution peak width to complement its higher capacity (Figure 5). The mass transfer properties also contribute to minimal peak broadening. Figure 6 shows the excellent peak shape for TOYOPEARL MX-Trp-650M and the much broader tailing associated with the Brand M agarose material.

Figure 4: DBC at higher linear velocities

![Figure 4](image)

Resins:
- **TOYOPEARL MX-Trp-650M**
- **Brand M**

Column size:
- 0.6 mm ID x 4.0 cm

Mobile phase:
- Buffer A: 0.05 mol/L sodium acetate buffer, pH 4.7 + 0.1 mol/L sodium chloride
- Buffer B: 0.1 mol/L Tris-HCl buffer, pH 8.5 + 0.3 mol/L sodium chloride

Flow rates:
- A: 212 cm/hr (1, 2, 3, 4 mL/min)
- B: 424 cm/hr (2.0 mL/min) started at 124 min

Detection:
- UV @ 280 nm

Sample:
- Polyclonal human IgG (1 mg/mL)

Sample load:
- 1 mg/mL

Dynamic binding capacities (DBC) were determined at 10% breakthrough.

Figure 5: Narrow elution peak widths

![Figure 5](image)

Resin:
- **TOYOPEARL MX-Trp-650M**

Column size:
- 6 mm ID x 4 cm

Mobile phase:
- Buffer A: 0.05 mol/L acetate buffer, pH 4.7 + 0.1 mol/L NaCl (12 mS/cm)
- Buffer B: 0.1 mol/L Tris-HCl buffer, pH 8.5 + 0.3 mol/L NaCl

Flow rate:
- A: 212 cm/hr (1.0 mL/min)
- B: 424 cm/hr (2.0 mL/min) started at 124 min

Detection:
- UV @ 280 nm

Sample:
- CHO cell culture media, monoclonal antibody (1 mg/mL) diluted with buffer A

Yield 96%

Figure 6: Good resolution for intermediate purification

![Figure 6](image)

Resins:
- **TOYOPEARL MX-Trp-650M, Brand M**

Column size:
- 7.5 mm ID x 7.5 cm

Mobile phase:
- Buffer A: 20 mmol/L phosphate, pH 7.0
- Buffer B: 20 mmol/L phosphate + 1.0 mol/L NaCl, pH 7.0

Gradient:
- 30 min. linear gradient from buffer A to buffer B

Flow rate:
- 136 cm/hr (1.0 mL/min)

Detection:
- UV @ 280 nm

Sample:
- Trypsinogen (6.6 mg/mL)
- Cytochrome C (3.6 mg/mL)
- Lysozyme (6.6 mg/mL)

Load volume:
- 25 µL
Selectivity of TOYOPEARL MX-Trp-650M, when compared to a traditional weak cation exchange (TOYOPEARL GigaCap CM-650M) and a traditional strong cation exchange (TOYOPEARL GigaCap S-650M) resin, is noticeably different. A three protein mixture (trypsinogen, cytochrome C, and lysozyme) was loaded onto each resin in 20 mmol/L sodium phosphate buffer (pH 7.0) and eluted with a linear salt gradient (Figure 7). Resolution between the peaks was measured and recorded for comparison (Table 4). Further selectivity comparisons were done at decreasing pH levels for all three resins with the same protein mixture at pH 6.0 (20 mmol/L sodium acetate) and pH 5.0 (20 mmol/L sodium citrate) and were compared to the initial screening at pH 7.0 (Figures 8-10). Resolution between the peaks was likewise measured and recorded for comparison (Tables 5-7).

Table 4: Initial selectivity screening peak resolutions

<table>
<thead>
<tr>
<th>Resin</th>
<th>Peak resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trypsinogen/</td>
</tr>
<tr>
<td></td>
<td>cytochrome C</td>
</tr>
<tr>
<td>TOYOPEARL MX-Trp-650M</td>
<td>0.81</td>
</tr>
<tr>
<td>TOYOPEARL GigaCap S-650M</td>
<td>0.94</td>
</tr>
<tr>
<td>TOYOPEARL GigaCap CM-650M</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Table 5: TOYOPEARL MX-Trp-650M pH scouting peak resolutions

<table>
<thead>
<tr>
<th></th>
<th>Trpsinogen retention (mL)</th>
<th>Cytochrome C retention (mL)</th>
<th>Trpsinogen/ Cytochrome C resolution (Rs)</th>
<th>Lysozyme retention (mL)</th>
<th>Cytochrome C/ Lysozyme resolution (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate pH 7.0</td>
<td>44.88</td>
<td>54.36</td>
<td>0.81</td>
<td>73.63</td>
<td>1.50</td>
</tr>
<tr>
<td>Acetate pH 6.0</td>
<td>50.01</td>
<td>58.45</td>
<td>0.89</td>
<td>69.87</td>
<td>1.04</td>
</tr>
<tr>
<td>Citrate pH 5.0</td>
<td>53.08</td>
<td>62.94</td>
<td>1.07</td>
<td>85.97</td>
<td>1.57</td>
</tr>
</tbody>
</table>

Figure 7: Initial selectivity screening

Figure 8: TOYOPEARL MX-Trp-650M pH scouting

Figure 9: TOYOPEARL MX-Trp-650M pH scouting

Figure 10: TOYOPEARL MX-Trp-650M pH scouting
Table 6: TOYOPEARL GigaCap S-650M pH scouting peak resolutions

<table>
<thead>
<tr>
<th></th>
<th>Trypsinogen retention (mL)</th>
<th>Cytochrome C retention (mL)</th>
<th>Trypsinogen/cytochrome C resolution (Rs)</th>
<th>Lysozyme retention (mL)</th>
<th>Cytochrome C/lysozyme resolution (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate pH 7.0</td>
<td>40.38</td>
<td>49.46</td>
<td>0.94</td>
<td>58.27</td>
<td>0.82</td>
</tr>
<tr>
<td>Acetate pH 6.0</td>
<td>43.44</td>
<td>52.46</td>
<td>1.16</td>
<td>57.20</td>
<td>0.75</td>
</tr>
<tr>
<td>Citrate pH 5.0</td>
<td>44.96</td>
<td>54.05</td>
<td>1.23</td>
<td>65.29</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 7: TOYOPEARL GigaCap CM-650M pH scouting peak resolutions

<table>
<thead>
<tr>
<th></th>
<th>Trypsinogen retention (mL)</th>
<th>Cytochrome C retention (mL)</th>
<th>Trypsinogen/cytochrome C resolution (Rs)</th>
<th>Lysozyme retention (mL)</th>
<th>Cytochrome C/lysozyme resolution (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate pH 7.0</td>
<td>40.89</td>
<td>52.20</td>
<td>1.40</td>
<td>55.45</td>
<td>0.43</td>
</tr>
<tr>
<td>Acetate pH 6.0</td>
<td>44.81</td>
<td>60.46</td>
<td>1.18</td>
<td>68.46</td>
<td>0</td>
</tr>
<tr>
<td>Citrate pH 5.0</td>
<td>53.71</td>
<td>61.46</td>
<td>0.84</td>
<td>61.46</td>
<td>0</td>
</tr>
</tbody>
</table>
To examine the role the hydrophobic region of the tryptophan ligand can play in protein separations on TOYOPEARL MX-Trp-650M, the resin was tested to determine if it was possible to be used solely in HIC mode by loading lysozyme onto the column in 10 mmol/L sodium citrate, 1.8 mol/L ammonium sulfate, pH 5.0. The bound lysozyme was eluted with a decreasing linear gradient of 10 mmol/L sodium citrate, pH 5.0 (Figure 11). Comparison of resin selectivity in HIC mode and weak cation mode was done using a three protein mix (ribonuclease A, α-chymotrypsinogen, and lysozyme) at pH 5.0 with sodium citrate as the mobile phase buffering salt (Figure 12 and 13). Further selectivity experiments with TOYOPEARL MX-Trp-citrate as the mobile phase buffering salt (Figure 12 and 13). Further selectivity experiments with TOYOPEARL MX-Trp-650M can be found in AN44: TOYOPEARL MX-Trp-650M Salt Selectivity and Tolerance.

Figure 11: TOYOPEARL MX-Trp-650M HIC functionality with cation comparison

Resin: TOYOPEARL MX-Trp-650M
Column size: 6.6 mm ID × 15.5 cm (5.30 mL)
Mobile phase:
Buffer A (HIC): 10 mmol/L sodium citrate, 1.8 mol/L ammonium sulfate, pH 5.0
Buffer B (HIC): 10 mmol/L sodium citrate, pH 5.0
Buffer A (cation): 20 mmol/L sodium citrate, pH 5.0
Buffer B (cation): buffer A + 1.0 mol/L NaCl
Gradient: 60 minutes 0% B - 100% B
Flow rate: 200 cm/hr (1.14 mL/min)
Detection: UV @ 280 nm, conductivity (mS/cm)
Temperature: ambient
Sample: lysozyme (cation – 10 mg/mL; HIC – 4 mg/mL)
Sample load: 5% CV (1.06 and 2.65 mg total protein)

Figure 12: TOYOPEARL MX-Trp-650M HIC selectivity

Figure 13: TOYOPEARL MX-Trp-650M cation selectivity

Resin: TOYOPEARL MX-Trp-650M
Column size: 6.6 mm ID × 15.5 cm (5.30 mL)
Mobile phase:
Buffer A (cation): 20 mmol/L sodium citrate, pH 5.0
Buffer B (cation): buffer A + 1.0 mol/L NaCl
Gradient: 60 minutes 0% B - 100% B
Flow rate: 200 cm/hr (1.14 mL/min)
Detection: UV @ 280 nm, conductivity (mS/cm)
Temperature: ambient
Sample: 1. ribonuclease A (4.0 mg/mL), 2. α-chymotrypsinogen (5.0 mg/mL), 3. lysozyme (6.0 mg/mL)
Sample load: 5% CV (3.98 mg total protein)
Parameters to Consider when Using TOYOPEARL MX-Trp-650M

Coordinating the hydrophobicity and charge of the therapeutic target to TOYOPEARL MX-Trp-650M is critical for the best overall purification performance. Operating at the extremes of hydrophobicity or charge for a given protein can result in drastically reduced performance of the resin or in some cases, a loss of biological activity. An optimum mixed-mode process step will balance high dynamic binding capacity, adequate selectivity, good mass recovery, and retention of biological activity. Execution of a DoE protocol during the screening process will enable developers to optimize protein separations by fine tuning mobile phase pH, conductivity and product load parameters.

Separation of Aggregates from mAbs

TOYOPEARL MX-Trp-650M successfully removes mAb aggregate from monomer using a narrow combination gradient of pH and conductivity (the pH and salt concentration range from pH 4.0 to 6.0 and 0.2 mol/L NaCl to 0.4 mol/L NaCl) respectively (Figure 14). The aggregate content in the monomer pool is below 1%, as shown in SEC chromatograms of the collected fractions analyzed in Figure 15. From these results it can be seen that TOYOPEARL MX-Trp-650M can be utilized as a highly efficient tool for aggregate removal of mAbs, as it offers capacities comparable to IEX, high recovery, and excellent selectivity.

Figure 14: Separation of mAb monomers and aggregates

<table>
<thead>
<tr>
<th>Fraction</th>
<th>UV absorbance</th>
<th>Conductivity</th>
<th>pH</th>
<th>Fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Detector response (mAU)

Retention volume (mL)

Resin: TOYOPEARL MX-Trp-650M
Column size: 6.6 mm ID × 2.0 cm
Mobile phase: Buffer A: 0.1 mol/L acetate + 0.2 mol/L NaCl, pH 4.3
Buffer B: 0.1 mol/L acetate + 0.4 mol/L NaCl, pH 5.6
Flow rate: 150 cm/hr (0.86 mL/min)
Detection: UV @ 280 nm
Sample: 10 mg mAb + mAb aggregates
Sample load: 1 g/L

Figure 15: SEC chromatograms of the collected fractions

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Detector response (mAU)</th>
<th>Retention time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>35</td>
</tr>
</tbody>
</table>

Detector response (mS/cm)

Retention time (minutes)

Resin: TOYOPEARL MX-Trp-650M
Column size: 6.6 mm ID × 2.0 cm
Mobile phase: Buffer A: 0.1 mol/L acetate + 0.2 mol/L NaCl, pH 4.3
Buffer B: 0.1 mol/L acetate + 0.4 mol/L NaCl, pH 5.6
Flow rate: 150 cm/hr (0.86 mL/min)
Detection: UV @ 280 nm
Sample: 10 mg mAb + mAb aggregates
Sample load: 1 g/L
A selection of screening tools are available for TOYOPEARL Mixed-Mode resin. See the Process Development Products section of this Product Guide for details.

Ordering Information

TOYOPEARL Mixed-mode resin:

<table>
<thead>
<tr>
<th>Part #</th>
<th>Product description</th>
<th>Container size (mL)</th>
<th>Bead diameter (µm)</th>
<th>IgG capacity (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22817</td>
<td>TOYOPEARL MX-Trp-650M</td>
<td>25</td>
<td>50 - 100</td>
<td>90 - 100</td>
</tr>
<tr>
<td>22818</td>
<td>TOYOPEARL MX-Trp-650M</td>
<td>100</td>
<td>50 - 100</td>
<td>90 - 100</td>
</tr>
<tr>
<td>22819</td>
<td>TOYOPEARL MX-Trp-650M</td>
<td>1,000</td>
<td>50 - 100</td>
<td>90 - 100</td>
</tr>
<tr>
<td>22820</td>
<td>TOYOPEARL MX-Trp-650M</td>
<td>5,000</td>
<td>50 - 100</td>
<td>90 - 100</td>
</tr>
</tbody>
</table>