
No.100

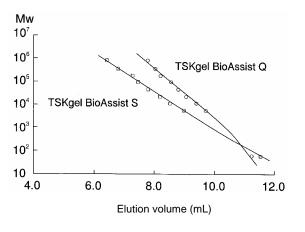
SEPARATION REPORT

1. Introduction

When liquid chromatography is used for purification and processing of biopolymers such as proteins, it is general to purify or process proteins stepwisely by combination of different chromatography with several separation modes. Among various separation modes, ion-exchange chromatography is most commonly used because it has a high protein binding capacity. It has been thought that the method of introducing a relatively thick ion-exchange layer on the packing surface is effective in improving the binding capacity of the packings, and methods of polymer chain introduction using graft polymerization, etc. were known. However, such methods caused extremely high column pressure drops, making it difficult to decrease particle size, and it was also difficult to have both high separation performance and high binding capacity at the same time.

TSKgel BioAssist series is a group of ion-exchange columns which solve this problem by introducing ionic polymers loosely cross-linked to the porous material surface. This article describes the basic properties, applications and operating conditions for the TSKgel BioAssist series, which realizes high binding capacity and high resolution at a low column pressure drops equivalent to that of a conventional column while also having a high retention.

2. Basic Properties


2-1. Ion-Exchange Capacity and Pore Characteristics

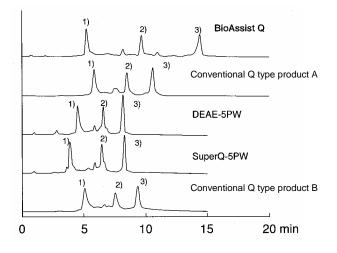
TSKgel BioAssist series consists of an anion-exchange column, TSKgel BioAssist Q and a cation-exchange column, TSKgel BioAssist S. TSKgel BioAssist Q is introduced with polyamine as the ion-exchange groups, and the structure of the ion-exchange groups is a mixture of tertiary and quaternary ammonium. On the other hand, TSKgel BioAssist S is introduced with a polymer containing sulfopropyl groups, and the ion-exchange structure is the sulfopropyl groups. The total ion-exchange capacity of each has been prepared to approximately 0.1 meq per 1mL gel for each packings (**Table-1**).

Figure 1 shows the pore characteristics of TSKgel BioAssist series. The base material of TSKgel BioAssist Q with exclusion limit of 5 million or larger (on a polystyrene basis) and that of TSKgel BioAssist S with exclusion limit of approximately 3 million (on a polystyrene basis) have been introduced with an ion-exchange groups, and the exclusion limit as an ion-exchanger is 1 million or larger (on a pullulan basis) in either case. Since TSKgel BioAssist series contain pore diameter larger than the conventional packings, it is expected that the surface area is smaller than conventional ones. However, it possesses a high binding capacity that does not depend on the sample's molecular weight because three-dimensional absorption is made against a sample with small molecular weight, and the large pore diameter allows sufficient sample permeation into the pores for samples with large molecular weight.

5			
Item	BioAssist Q	BioAssist S	
Base material	Porous acrylate-type gel	Porous acrylate-type gel	
Average particle diameter (µm)	10	7	
Functional groups	Polyamine	Sulfopropyl groups	
lon-exchange capacity (eq/L)	0.1	0.1	
pH range for use (long-term)	3-10	3-10	
pH range for use (short-term)*	2-12	2-12	
Dynamic binding capacity (g/L)	>70 (Bovine serum albumin) >70 (Thyroglobulin)	>70 (γ-globulin) >70 (Lysozyme)	
Appropriate flow rate (mL/min)	1	0.8	
Maximum flow rate (mL/min)	1.2	1	
Maximum pressure drops(MPa)	2.5	2.5	
Column member	PEEK	PEEK	
Column size (mm I.D. × cm)	4.6 × 5	4.6 × 5	
* 1 month or less			

Table-1 Features of TSKgel BioAssist series

Figure-1 Calibration curves for TSKgel BioAssist series


Eluent:	20mmol/L Tris-HCI buffer, pH8.0
	(BioAssist Q)
	20mmol/L Sodium phosphate buffer, pH7.0
	(BioAssist S)
Flow rate:	0.5mL/min (BioAssist Q)
	0.4mL/min (BioAssist S)
Samples:	pullulan
* Samples	were measured by 7 8mm I D × 30cm column

Samples were measured by 7.8mm I.D.× 30cm column.

¹ month or less

2-2. Separation of Standard Proteins

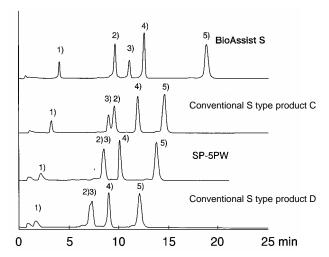

Figure-2 shows a comparison of standard protein separation on TSKgel BioAssist Q and conventional columns. It is clear that TSKgel BioAssist Q possesses a higher retention and resolution of those proteins compared to the conventional products. Likewise, as shown in Figure-3, comparison of separation on TSKgel BioAssist S and conventional columns also shows that TSKgel BioAssist S has a higher retention and resolution.

Figure-2 Comparison of standard protein separation on TSKgel BioAssist Q and conventional columns

Columns:

TSKgel BioAssist Q		4.6mm I.D. × 5cm, PEEK	
Conventional Q t	ype product A	5.0mm I.D. × 5cm, Glass	
TSKgel DERE-5	PW	5.0mm I.D. × 5cm, Glass	
TSKgel SuperQ-	5PW	5.0mm I.D. × 5cm, Glass	
Conventional Q t	ype product B	4.6mm I.D. × 5cm, PEEK	
Eluent:	A; 20mmol/L Ti	is-HCl buffer, pH8.0	
	B; 20mmol/L Ti	is-HCI buffer containing	
	1.0mol/L Na	CI, pH8.0	
	Linear gradient	from eluent A to B for 30	
	minutes		
Flow rate:	1.0mL/min		
Temperature:	25°C		
Detection:	UV (280nm)		
Injection volume:	60µL		
Samples:	1) Conalbumin	0.5g/L	
	2) Ovalbumin	1.0g/L	
	Trypsin inhibi	tor 1.0g/L	

protein Figure-3 Comparison of standard separation by TSKgel BioAssist S and conventional columns

 $4.6mm I.D. \times 5cm, PEEK$

Columns: TSKgel BioAssist S Con

- 3		-	/
Conventional S type product C		5.0mm I.D	$. \times 5$ cm, Glass
TSKgel SP-5PW	,	5.0mm I.D	. × 5cm, Glass
Conventional S t	ype product D	4.6mm I.D	$. \times 5$ cm, PEEK
Eluent:	A; 20mmol/L s	odium phosp	ohate buffer,
	pH6.5		
	B; 20mmol/L s	odium phosp	ohate buffer
	containing 1	I.0mol/L NaC	CI, pH6.5
	Linear gradient	from eluent	t A to B for 32
	minutes		
Flow rate:	0.8mL/min		
Temperature:	10°C		
Detection:	UV (280nm)		
Injection volume:	20µL		
Samples:	1) Myoglobin		1g/L
	2) α-chymotryp	sinogen A	2g/L
	3) Ribonucleas	e A	4g/L
	4) Cytochrome	С	2g/L
	5) Lysozyme		2g/L

2-3. Capacity

Figure-4 shows the results of comparing the changes in dynamic binding capacity against the molecular weight between this product and a certain conventional product. While the binding capacity of the conventional product decreases as the molecular weight of protein increases, TSKgel BioAssist Q maintains a high binding capacity from samples with low molecular weights to those with high molecular weights. **Tables-2 and 3** show the dynamic binding capacity of TSKgel BioAssist Q and TSKgel BioAssist S, respectively, against various

Furthermore, **Table-4** shows the pH dependence of binding capacity when antibody (mouse IgG1 pI 6.41) is used. According to **Table-3**, it is clear that TSKgel BioAssist S possesses a high binding capacity similar to TSKgel BioAssist Q regardless of molecular weight, from samples with low molecular weights to those with high molecular weights. In addition, **Table-4** indicates that it is capable of maintaining IgG under milder, neutral conditions compared to conventional commercial ion-exchange columns, because it has a high retention.

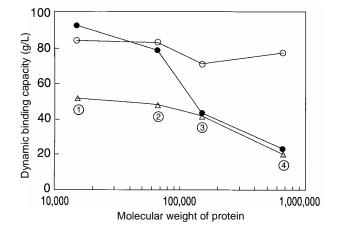


Figure-4 Effect of molecular weight of the sample on dynamic binding capacity

Columns:

O TSKgel BioAssist Q			nm I.D. × 1cm
\triangle Conventior	nal Q type produc	tA 4.6r	nm I.D. × 1cm
 TSKgel Su 	perQ-5PW	4.6r	nm I.D. × 1cm
Flow rate:	0.38mL/min	Temperat	ure: 25°C
Detection:	UV (280nm)		
Sample solvent: 20mmol/L Tris-HCl buffer, pH8.0			pH8.0
Sample concent	ration:		
	① Trypsin inhibi		10g/L
	② Human serun	n albumin	10g/L
	3 InG1		2 3a/l

③ IgG1	2.3g/L
④ Thyroglobulin	5g/L

* The capacity was determined as 10% height of the breakthrough curve at UV 280nm.

Table-2 Comparison of dynamic binding capacity (BioAssist Q)

	Binding capacity (g/L)			
	BioAssist Q SuperQ Conventional Conventional			
Protein		-5PW	Q type product A	Q type product B
Thyroglobulin	77.4	22.9	20.2	1.8
Monoclonal IgG1	57.8	43.3	46.7	47.7
Human Serum Albumin	83.1	78.9	48.2	48.8
Trypsin Inhibitor	84.3	92.8	51.8	57.8

Columns:

TSKgel BioAssist Q		4.6mm I.D. × 1cm
TSKgel SuperQ-5PW		4.6mm I.D. imes 1cm
Conventional Q type product A		$4.6mm$ I.D. \times 1cm
Conventional Q type product B		4.6mm I.D. × 1cm
Solvent: 20mmol/L Tris-HCl buffer, pH8.0		fer, pH8.0
Flow rate: 0.38mL/min		
Detection: UV (280nm)		

* The capacity was determined as 10% height of the breakthrough curve at UV 280nm.

Table-3	Comparison of dynamic protein binding
	capacity (BioAssist S)

		Binding capacity (g/L)	
Protein		BioAssist S	Conventional S type product C
γ-globulin		79	48
Lysozyme		84	63
Cytochrome C		95	43
lpha-chymotrypsino	gen A	119	-
Columns:	TSKgel Bio		
Size:	Conventional S type product C 4.6mm I.D. \times 5mm (lysozyme, cytochrome C, α -chymotrypsinogen A) 5.0mm I.D. \times 1cm (γ -globulin)		
Solvent:	20mmol/L sodium phosphate buffer, pH6.5 (lysozyme, cytochrome C, α-chymotrypsinogen A) 20mmol/L sodium phosphate buffer, pH5.0 (γ-globulin)		
Flow rate:	0.38mL/mi	,	
Temperature: Detection: * The capaci breakthroug	UV (280nm ty was det	ermined as	10% height of the

Table-4 Relationship of solvent pH to antibody binding capacity

	Binding	Binding capacity (g/L)		
Solvent pH	BioAssist S	Conventional S type product		
7.0	0	0		
6.5	1.5	0		
6.0	67	0		
5.5	62	30		

Columns:

TSKgel BioAssist S 5.0mm I.D. × 1cm Conventional S type product C 5.0mm I.D. × 1cm Solvent: 20mmol/L sodium phosphate buffer, pH5.5 20mmol/L MES-HCI buffer, pH6.0 20mmol/L sodium phosphate buffer, pH6.5, 7.0 Flow rate: 0.44mL/min Temperature: 25°C Detection: UV (280nm) Sample: IgG1

The capacity was determined as 10% height of the breakthrough curve at UV 280nm.

2-4. Effect of Sample Load

Figures-5 and 6 show overlaid chromatograms when proteins with different load were applied on TSKgel BioAssist Q and a commercial Q type product A, respectively. With TSKgel BioAssist Q, little change in peak shape or separation was seen up to the load of 10mg. On the other hand, commercial Q type product A (**Figure-6**) showed an obvious change in peak shape for ovalbumin that elutes first at the load of 10mg. As you can see, TSKgel BioAssist Q is capable of being loaded with

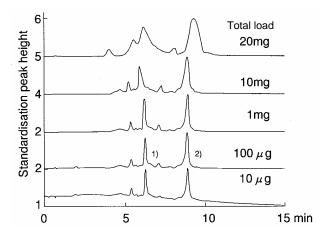
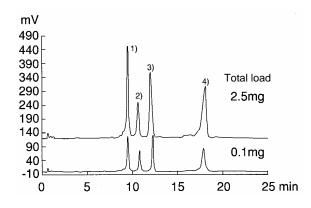



Figure-5 Effect of sample load on chromatogram (TSKgel BioAssist Q)

Column: TSKgel BioAssist Q 4.6mm I.D. × 5cm, PEEK Eluent: A; 20mmol/L Tris-HCl buffer, pH8.0 B; 20mmol/L Tris-HCl buffer containing 1.0mol/L NaCl, pH8.0 Linear gradient from eluent A to B for 30 minutes Flow rate: 1.0mL/min Temperature: 25°C Detection: UV (280nm) Samples: 1) Ovalbumin 2) Trypsin inhibitor

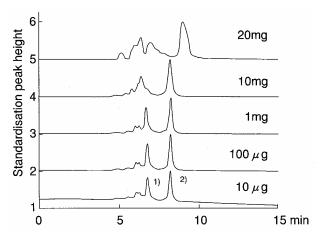
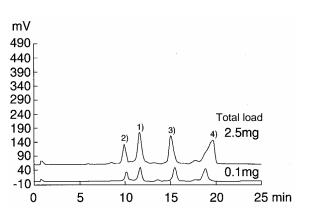

* Chromatograms have been normalized.

Figure-7 Effect of sample load on chromatogram (TSKgel BioAssist S)

- Column: TSKgel BioAssist S 4.6mm I.D. × 5cm, PEEK
- Eluent: A; 20mmol/L sodium phosphate buffer, pH6.5 B; 20mmol/L sodium phosphate buffer containing
 - 1.0mol/L NaCl, pH6.5 Linear gradient from eluent A to B for 30 minutes
- Flow rate: 0.8mL/min Temperature: 10°C
- Detection: UV (280nm) (10mm cell for total load 0.1mg, 1mm cell for total load 2.5mg)
- Samples: 1) α- chymotrypsinogen A 2) Ribonuclease A 3) Cytochrome C 4) Lysozyme


samples equivalent to commercial product or more, while maintaining separation and peak shape in spite of its smaller column size. **Figures-7 and 8** show overlaid chromatograms with sample load of 0.1mg and 2.5mg for TSKgel BioAssist S and a commercial S type product C. While peak shape and separation change at the load of 2.5mg with the commercial S type product C, TSKgel BioAssist S shows little change. Therefore, TSKgel BioAssist S is also applicable of sample loads equivalent to commercial product or more while maintaining separation and peak shape.

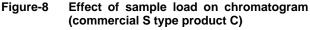


Figure-6 Effect of sample load on chromatogram (commercial Q type product A) Column: Commercial Q type product A

5.0mm I.D. × 5cm, Glass

Other conditions are identical to Figure-5. * Chromatograms have been normalized.

Column: Commercial S type product C 5.0mm I.D. × 5cm, Glass

Other conditions are identical to Figure-7.

2-5. Dependence of Resolution on Flow Rate

Figure-9 shows the effect of flow rate on the peak width on TSKgel BioAssist Q. While the peak width becomes narrower as the flow rate increases, dependence of peak width on flow rate becomes small at 0.8mL/min and over. Although elution time is shortened little by little as the flow rate increases and it is possible to reduce the separation time, the flow rate of 1.0mL/min seems to be optimal, considering the fact that sample dilution by the eluent becomes larger and column's maximum pressure drops. Furthermore, similar results have been obtained on TSKgel BioAssist S, whose optimal flow rate is 0.8mL/min.

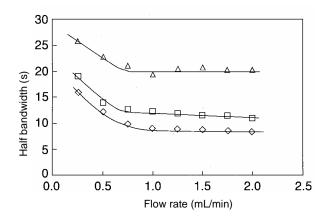


Figure-9 Dependence of peak width on the flow rate in protein separation on TSKgel BioAssist Q

Column: TSKgel BioAssist Q 4.6mm I.D. \times 5cm, PEEK Separation conditions:

same as Figure-2 (except flow rate and gradient time) Gradient time ◇ 10 minutes □ 15 minutes △ 30 minutes

Sample: Ovalbumin

2-6. Dependence of Resolution on Gradient Time

The dependence of resolution of TSKgel BioAssist Q on the gradient time is shown in **Figure-10**. Although resolution is improved as the gradient time becomes longer, the slope becomes shallow when it reaches 20 minutes. Since the longer the gradient time is, the longer the analysis time becomes and the larger the sample dilution becomes, 20 to 30 minutes may be optimal for the gradient time. Similar results have been obtained on TSKgel BioAssist S.

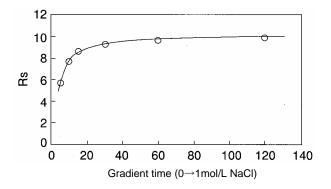


Figure-10 Dependence of resolution on gradient time in protein separation on TSKgel BioAssist Q

Column: TSKgel BioAssist Q $4.6mm I.D. \times 5cm$, PEEK Separation conditions:

same as Figure-2 (except gradient time)

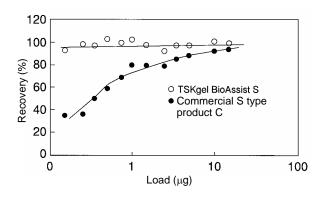
Samples: Ovalbumin, trypsin inhibitor

2-7. Recovery of Proteins

Tables-5 and 6 show the recovery of proteins on TSKgel BioAssist S and Q, respectively. Since TSKgel BioAssist series uses hydrophilic acrylate base material, it rarely causes non-specific adsorption and obtains a favorable recovery of various proteins even at a low sample load. **Figure-11** shows the antibody recovery in low sample load on TSKgel BioAssist S. While the recovery decreases when sample load decreases on a conventional styrene-type packings, the recovery did not decrease even at a low sample load on TSKgel BioAssist S, which showed a high recovery of 90% in the range of 100ng to $20\mu g$. In addition, the recovery of angiotensin II which are a group of peptides is shown in **Figure-12**. Angiotensin II was not able to be detected in this range of loads on commercial S type product (top figure of **Figure-12**).

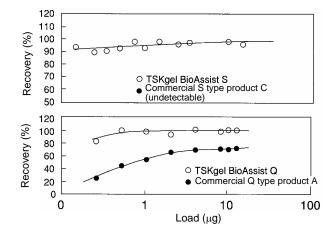
Table-5 Recovery of proteins on TSKgel BioAssist S

Sample name	Recovery (%)
Angiotensin II	98
Hemoglobin	93
γ-globulin	100
Lysozyme	109
Cytochrome C	105
lpha-chymotrypsinogen A	102


Column:	TSKgel BioAssist S
	4.6mm I.D. × 5cm, PEEK
Eluent:	20mmol/L sodium acetate buffer, pH5.0
	(angiotensin II)
	20mmol/L sodium phosphate buffer, pH6.5
	(samples other than angiotensin II)
Sample load:	10µg
Measurement:	Step gradient to 1.0mol/L NaCl soon aft

Measurement: Step gradient to 1.0mol/L NaCl soon after injection. Calculated from the peak area ratio against the blank test.

Table-6	Recovery of proteins on TSKgel BioAssist
	0


Sample name	R	ecovery (%)
Angiotensin II		100
Ovalbumin		94
Trypsin inhibitor		107
Conalbumin		86
γ-globulin		93
Myoglobulin		95
Column:	TSKgel BioAssist Q 4.6mm I.D. × 5cm, PEEK	
Eluent:	20mmol/L Tris-HCl buffer, pH8.	0

4.6mm I.D. × 5cm, PEEK
 Eluent: 20mmol/L Tris-HCI buffer, pH8.0
 Sample load: 10μg
 Measurement: Step gradient to 1.0mol/L NaCI soon after injection. Calculated from the peak area ratio against the blank test.

Figure-11 Comparison of γ-globulin recovery Columns:

TSKgel BioAssist S	4.6mm I.D. × 5cm, PEEK
Commercial S type product C	5.0mm I.D. × 5cm, Glass
Measurement: Same as Table-5	

Figure-12 Comparison of recovery for Angiotensin II

Upper figure

Column:

oolullill.	
TSKgel BioAssist S	4.6mm I.D. × 5cm, PEEK
Commercial S type product C	5.0mm I.D. × 5cm, Glass
Measurement: Same as Table-5	

Bottom figure Column:

Column:	
TSKgel BioAssist Q	4.6mm I.D. × 5cm, PEEK
Commercial Q type product A	5.0mm I.D. × 5cm, Glass
Measurement: Same as Table-6	

_ 7 _

3. Operating Conditions

3-1. Pressure Drops

The maximum pressure drops of both TSKgel BioAssist Q and TSKgel BioAssist S is 2.5MPa. It is necessary to take care of pressure drop fluctuation which comes from the change of column temperature or eluent composition even though under the constant flow rate. We recommend to use at the optimal flow rate (1.0mL/min for TSKgel BioAssist Q, 0.8mL/min for TSKgel BioAssist S) in gradient analysis with increasing salt concentration that does not contain general organic solvents.

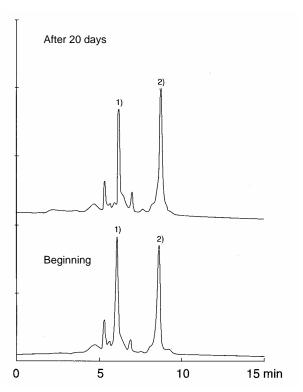


Figure-13 Caustic stability of TSKgel BioAssist Q in 0.5mol/L NaOH solution

......

~

Column:	TSKgel BioAssist Q		
	4.6mm I.D. × 5cm, PEEK		
Eluent:	A; 20mmol/L Tris-HCl buffer, pH8.0		
	B; 20mmol/L Tris-H	CI buffer containing	
	1.0mol/L NaCl, pl	H8.0	
	Linear gradient from	eluent A to B for 15	
	minutes		
Flow rate:	1.0mL/min		
Temperature:	25°C		
Detection:	UV (280nm)		
Injection volume:	60µĹ		
Samples:	1) Ovalbumin	1.0g/L	
·	2) Trypsin inhibitor	1.0g/L	

3-2. Caustic Stability

Column cleaning by alkaline solution is an effective method of column regeneration. The changes in selectivity of TSKgel BioAssist Q and S when 0.5mol/L NaOH solution is enclosed in each and left under room temperature are shown in **Figures-13 and 14**, respectively. Little change was seen in the chromatogram by either column even after 20 days. Furthermore, when a measurement method was repeated 50 times, in which 0.5mol/L NaOH solution of approximately 5 times the column volume was passed through after measuring a standard protein under the conditions similar to **Figures-2 and 3**, no change was seen in selectivity, pressure drops, etc.

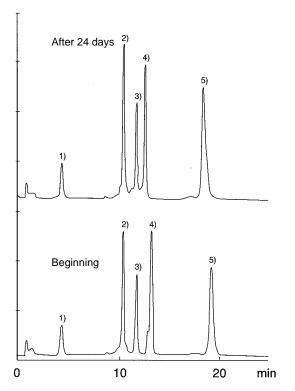


Figure-14 Caustic stability of TSKgel BioAssist S in 0.5mol/L NaOH solution

Column:	TSKgel BioAssist S 4.6mm I.D. × 5cm, PEEK			
Eluent:	A; 20mmol/L sodium phosphate buff pH6.5			
	B; 20mmol/L sodium phose containing 1.0mol/L NaC			
	Linear gradient from eluent A to B for 32			
	minutes			
Flow rate:	0.8mL/min			
Temperature:	10°C			
Detection:	UV (280nm)			
Injection volume:	20µL			
Samples:	1) Myoglobin	1.0g/L		
·	2) α-chymotrypsinogen A	2.0g/L		
	3) Ribonuclease A	4.0g/L		
	4) Cytochrome C	2.0g/L		
	5) Lysozyme	2.0g/L		

3-3. Buffer

Besides pollution originating from the sample, columns are also polluted by impurities included in the water or reagents used in the buffer. Therefore, make sure to use ultra pure water, distilled water for HPLC, distilled water for injection, etc. for water, and use reagents with HPLC grade or special grade. In addition, please filter the prepared buffers through a filter ($0.22\mu m$ or $0.45\mu m$).

3-4. HPLC System

In order to prevent penetration of insoluble compounds into the column, please attach a line $\operatorname{filter}^{(1)}$ between the pumping system and the injector. In addition, sample should be applied after filtration by disposable filter etc.²⁾ in order to prevent penetration of insoluble component in the sample. It will be more effective if a line filter³⁾ is attached between the injector and the column.

- 1) Line filter holder (product No.: 14766)
- Filter element C (product No.: 13963)
- 2) Myshori disk (for aqueous solution) see Table-7.
- 3) Line filter kit PEEK (product No.: 18014) Line filter element PEEK (product No.: 18021)

3-5. Cleaning

resolution may deteriorate due to impurities in the sample clogging the end fitting or adsorbing onto the packings. In this case, resolution may be recovered by passing the eluent through the column in the backward direction or by cleaning with alkaline solution. Refer to the instruction manual attached to the column for more information.

4. Applications of Protein Separation

Figures-15 to 17 show application of protein separation on TSKgel BioAssist Q. **Figure-15** shows chromatograms of egg white. It is obvious that favorable separation is obtained on TSKgel BioAssist Q compared to commercial product. In **Figure-16**, chromatograms of mouse ascites fluid including monoclonal antibody are shown. A good separation between the antibody and albumin has been obtained. **Figure-17** shows chromatograms of commercial crude lipoxidase. It is apparent that good separation has also been achieved on this sample.

Figure-18 shows chromatograms of peptides on TSKgel BioAssist S. It is generally known that correct chromatogram is difficult to obtain when peptides, etc. are measured on a column with styrene-type base material, because sample tends to adsorb to the packings hydrophobically. However, TSKgel BioAssist S is capable of measuring peptides such as angiotensins without addition of organic solvents, etc. into the eluent since it is employed a hydrophilic acrylate as base material.

Table-7 List of Myshori disks (for aqueous solution)

Specifications		W-3-2	W-13-2	W-25-2	W-3-5	W-13-5	W-25-5
Туре	mm	3	13	25	3	13	25
Product No.		16145	16146	16147	16148	16149	16150
Pore diameter	μm		0.2			0.45	
Membrane material		Cellulose acetate					
Housing material				Polypro	pylene		
Size ($\phi \times L$)	mm	7 × 19	18 × 19	30 × 24	7 × 19	18 × 19	30 × 24
Effective filtering area	Cm ²	0.06	0.9	4	0.06	0.9	4
Volume of remnant liquid	μL	< 10	< 30	< 100	< 10	< 30	< 100
Maximum pressure drops MPa (25°C)		0.51					
Maximum temperature for use °C		60					
Possible sterilization method		Ethylene oxide gas					
Connection	Inlet	Lure lock					
	outlet			Lure	slip		
Unit of packing	quantity/box	100					

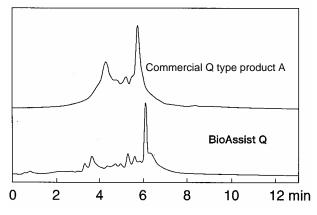


Figure-15 Comparison of egg white separation

TSKgel BioAssist Q 4.6mm I.D. \times 5cm, PEEK Commercial Q type product A 5.0mm I.D. \times 5cm, Glass Separation conditions are identical to Figure-2 except that the gradient time is changed to 15 minutes.

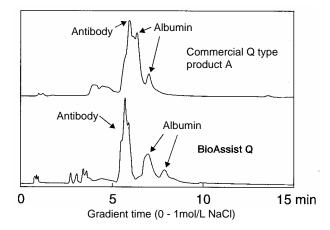
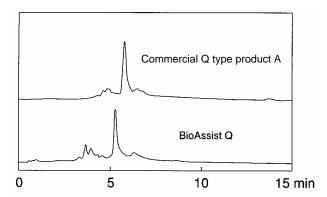



Figure-16 Comparison of mouse ascites antibody separation

Column:

 $\begin{array}{lll} \text{TSKgel BioAssist Q} & \text{4.6mm I.D.}\times\text{5cm}, \text{PEEK}\\ \text{Commercial Q type product A} & \text{5.0mm I.D.}\times\text{5cm}, \text{Glass}\\ \text{Separation conditions are identical to Figure-2 except that}\\ \text{the gradient time is changed to 15 minutes.} \end{array}$

Figure-17 Comparison of lipoxidase separation Column:

TSKgel BioAssist Q 4.6mm I.D. \times 5cm, PEEK Commercial Q type product A 5.0mm I.D. \times 5cm, Glass Separation conditions are identical to Figure-2 except that the gradient time is changed to 15 minutes.

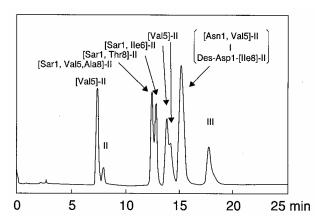


Figure-18 Separation of angiotensins

Column:	TSKgel BioAssist S
	4.6mm I.D. × 5cm, PEEK
Eluent:	A; 20mmol/L sodium acetate buffer, pH5.0
	B;20mmol/L sodium acetate buffer containing 1.0mol/L NaCl, pH5.0
	Linear gradient from eluent A to B for 20 minutes
Flow rate:	1.0mL/min
Temperature:	25°C
Detection:	UV (280nm)

5. Conclusion

This article has described the principle properties of TSKgel BioAssist series which has achieved high binding capacity, high retention, and high resolution at a low column pressure drops. Since TSKgel BioAssist series shows little deterioration in resolution even when injection is made in a large volume and has good recovery of trace elements because of its features, it is suited to purification with high purity level or separation of multi-component samples such as a crude extract of protein.