高速順相分配クロマトグラフィー用充填剤
TSKgel Amide-80を用いた糖類の分離(2)

<table>
<thead>
<tr>
<th>章目</th>
<th>内容</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>はじめに</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>3種のアミノ型シリカ系充填剤との比較</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>移動相としての有機溶媒の効果</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>移動相へのアミンの添加</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>高感度分析</td>
<td>7</td>
</tr>
<tr>
<td>6.</td>
<td>おわりに</td>
<td>10</td>
</tr>
</tbody>
</table>

東ソー株式会社
1．はじめに

糖類は、食品、紙、バルブ、繊維、醸酵製品や医薬品の原料として工業的に重要な物質です。また近年、糖類あるいは複合糖質の構造物質産が生体機能に関与することが示され、糖類は生物化学的にも重要な物質であると注目されています。そのため糖類あるいは糖類を効率良く分析できる方法が、工学、農学、理学、薬学、医学等の広範囲にわたって求められています。

高速液体クロマトグラフィーによる糖類の分離方法としては様々な方法があり、主に酸性体アミン交換クロマトグラフィー、逆相クロマトグラフィー、順相クロマトグラフィー、イオン交換クロマトグラフィー、イオンクロマトグラフィー、ゲル通過クロマトグラフィー、配位子交換クロマトグラフィー、強アルカリ性下アミン交換クロマトグラフィー、アソニティッククロマトグラフィー等の方法が挙げられます。

数々の方法の中で、順相クロマトグラフィーは、糖の分離が糖の溶出性の差によって行われる方法です。糖の溶出性は、流量基の数、方向、位置によって決定され、二糖類以上では単糖間の結合位置も関係します。またオリゴマーの分子量が保持容量から測定できるため、スイッチショーシェーションクロマトグラフィーと呼ばれています。

従来、糖類の順相クロマトグラフィー用充填剤としてはアミノ基結合シリカゲル充填剤が良く用いられてきました。しかしこれらの充填剤は化学的安定性が悪く、還元糖の回収率が良いこと等の欠点を持っています。これらの欠点を克服するために、アミノ基を有する基团とシリカゲルに結合させた充填剤（TSKgel Amide-80）が近年開発、上市され、不飽和二糖の分離、配糖体の分離、誘導体化アミノ糖の分析など幅広く応用されています。

当充填剤の基本的性質および実用（アセトニトリル/水を移動相として用い、示差屈折計で検出）については、セパレーションレポートNo.55『高速順相分配クロマトグラフィー用充填剤TSKgel Amide-80を用いた糖類の分析』にて既に紹介しています。本レポートでは、TSKgel Amide-80と他のシリカ系充填剤との比較、移動相有機溶媒の効果、アミン添加効果および糖の誘導体化による高感度分析例について紹介します。
図-1 化学的安定性

カラム：A: A社アミノ型シリカ系カラム（4.6mmI.D.×25cm）
B: TSKgel Amide-80（4.6mmI.D.×25cm）
C: B社アミノ型シリカ系カラム（4.6mmI.D.×25cm）
D: C社アミノ型シリカ系カラム（4.6mmI.D.×25cm）

カラム温度：A、C、D: 25℃、B: 80℃
溶媒液：アセトニトリル／水＝75／25
流速：1.0ml／min
検出：RI
試料：トレハロース（1mg／ml）、20μl
2-2 単糖類の定量回収性

図-2に3種類の糖を分離した際のカラムへの注入量とクロマトグラム上のピーク面積の関係を示します。TSKgel Amide-80(□)において、1種類の非還元糖（マンニトール）および2種類の還元糖（グルコース、キシリース）とも1.25から10μgまで直線的な関係が得られていました。一方、3種類のアミノ型シカリ系充填剤ではグルコースの場合で1.25μg、キシリースの場合で10μg以下の範囲で直線性が見られず回収率が悪くなっていると考えられます(データはA社カラムのみ示しました)。これは、充填剤のアミノプロピル基と還元糖がグリコシルアミン結合を作るためと考えられます。TSKgel Amide-80ではアミノプロピル基の代わりにカルボキシル基を導入しているためグリコシルアミン結合の形成が起こりません。したがって、微量の還元糖でも定量的な回収が行えます。

以上の様にTSKgel Amide-80は従来のアミノ型シカリ系充填剤に比べて化学的安定性、回収率に優れており特に連続分析、微量分析に有用であることが分かります。

図-2 単糖類の定量回収性

カラム：○ TSKgel Amide-80(4.6mmI.D.×25cm)
□ A社アミノ型シカリ系カラム
(4.6mmI.D.×25cm)

溶媒液：アセトニトリル／水=75／25

流速：1.0ml／min
検出：RI

カラム温度：○：80℃, □：25℃

試料：A：マンニトール, B：グルコース、
C：キシリース
3．移動相としての有機溶媒の効果

3-1 保持力

TSKgel Amide-80において4種類の有機溶媒を移動相に用いた場合の糖アルコールの保持容量を図-3に示します。同一溶媒濃度(75%)では用いた有機溶媒のプロトン受容体溶解パラメーターが小さいほど(A＜B＜C＜D)、糖の保持時間は長くなり、エタノールはかなり保持力が弱く図に示したように95%にしないと単糖類の分離には使用できません。これらの中ではアセトニトリル、アセトンが取扱いやすいと思われます。

3-2 選択性

表-1に、TSKgel Amide-80における移動相組成のアノマーの分離係数(α)に及ぼす影響を示します。またアセトニトリルおよびアセトンを溶媒化液に用いたβ-シクロデキストリン加水分解物の分離を図-4に示します。またシクロデキストリン(3種)の分離を図-5に示します。図-6には、アセトン系での糖混合物の分離を示します。指数表-1、図-4、図-5より、アセトニトリルとアセトン溶媒では試料の溶出時間をほぼ同じにした場合、①アセトン系の方がアノマー分離が大きいこと(表-1、図-4)②アセトニトリル系の方がα-、β-シクロデキストリンの分離が良いこと(図-5)③アセトン系の方がマルトースとラクトースの分離が良いこと(図-6)等の選択性の違いが有ることが分かります。したがって、分析対象により溶媒を選択して使用されることをお薦めします。また、食品などの精製に使用する際は精製物中の残存溶媒の問題を考慮すると毒性の少ないアセトン系が好ましいと思われます。

表-1 移動相組成のアノマーの分離係数(α)に及ぼす影響

<table>
<thead>
<tr>
<th>移動相</th>
<th>分離係数(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>グルコース</td>
</tr>
<tr>
<td>アセトニトリル/水</td>
<td></td>
</tr>
<tr>
<td>80/20</td>
<td>1.07</td>
</tr>
<tr>
<td>75/25</td>
<td>1.05</td>
</tr>
<tr>
<td>70/30</td>
<td>1.03</td>
</tr>
<tr>
<td>60/40</td>
<td>——</td>
</tr>
<tr>
<td>アセトン/水</td>
<td></td>
</tr>
<tr>
<td>85/15</td>
<td>1.09</td>
</tr>
<tr>
<td>75/25</td>
<td>1.03</td>
</tr>
</tbody>
</table>

図-3 TSKgel Amide-80における溶媒液組成とポリオールの保持容量の変化

カラム：TSKgel Amide-80(4.6mmI.D.×25cm)
溶媒液：A：アセトニトリル/水=75/25
B：アセトン/水=75/25
C：1,4-ジオキサン/水=75/25
D：エタノール/水=95/5
流 速：0.3mL/min
温 度：25℃
検 出：RI
試 料：a. グリセリン、b. エリスリトール、c. キシリトール、d. マンニトール、e. イソシトール

図-4 β-シクロデキストリンの加水分解物の分離

カラム：TSKgel Amide-80(4.6mmI.D.×25cm)
溶媒液：A：アセトニトリル/水=60/40
B：アセトン/水=65/35
流 速：1.0mL/min
温 度：25℃
検 出：RI
試 料：β-シクロデキストリン加水分解物
図-5  α、β、γ-シクロデキストリンの分離
カラム：TSKgel Amide-80（4.6mmI.D.×25cm）
溶離液：A：アセトニトリル／水＝60／40
B：アセトン／水＝65／35
流 速：1.0ml/min
温 度：25℃
検 出：RI
試 料：α、β、γ-シクロデキストリン

図-6 糖混合物の分離
カラム：TSKgel Amide-80（4.6mmI.D.×25cm）
溶離液：アセトン／水＝82／18
流 速：1.0ml/min
温 度：80℃
検 出：RI
試 料：単糖類 10mmol/l、二糖類 5mmol/l、20μl
1. ラムノース  2. リポース
3. キシロース  4. フルクトース
5. マンノース  6. グルコース
7. シューグルコース  8. マルトース
9. ラクトース  10. イソマルトース
4. 移動相へのアミンの添加

4-1 理論段高さ（HETP）への影響

アセトニトリル/蒸留水の移動相では最少のHETPを得るには、非還元糖で0.5～1.5mL/minの流速範囲、還元糖では80℃において0.25mL/min以下の流速範囲であることをセパレーションレポートNo.55で述べました。還元糖の最小HETPが得られる流速が非還元糖に比べてかなり低いのは、アノマー変換速度がカラムへの分配速度より遅い為と考えられます。

表2にアセトニトリル/蒸留水＝75/25の移動相に、5種類の20mM有機アミンを加えた時のTSKgel Amide-80における4種類の糖のHETPをまとめました。HETPを改善する効果および市販試薬の純度を考慮するとトリエチアルミン、ジエチアルミノエタノールが実用的と思われます。

図7にトリエチアルミン添加濃度におけるHETPの影響を示します。図に示したようにトリエチアルミンの添加濃度が上がるにつれて糖のHETPが減少していくのが分かります。この減少は、添加した有機アミンが還元糖のアノマー転換速度を早める為と考えられます。

図8に100mMトリエチアルミンを含んだ移動相での10種類の糖の分離効果を示します。25℃での分析にもかかわらず還元糖のアノマー分離は観測されませんでした。したがってアミンを添加した移動相を用いれば、測定温度を80℃にすることなく、室温で還元糖の分離が行えます。

表2 TSKgel Amide-80を用いた糖の分離におけるアミンの添加効果

<table>
<thead>
<tr>
<th>アミン (20mM)</th>
<th>25℃での糖のHETP (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>グルコース</td>
</tr>
<tr>
<td>トルソ*</td>
<td>88</td>
</tr>
<tr>
<td>エタノールアミン</td>
<td>n.d.**</td>
</tr>
<tr>
<td>トリエチアルミン</td>
<td>n.d.**</td>
</tr>
<tr>
<td>トリプチアルミン</td>
<td>69</td>
</tr>
<tr>
<td>ジエチアルミノエタノール</td>
<td>51</td>
</tr>
</tbody>
</table>

*：トリスヒドロキシメチルアミノメタン
**：肩のあるピークのため計算不可能
5. 高感度分析

5-1 プレラベル高感度分析

高感度分析の利点は微量の成分を分析できることです。特にビリジルアミノ化法では、次の様々な利点がありまし。
① 高感度である。
② ビリジルアミノ化誘導体が化学反応に比較的安定であるので、様々な処理することが可能となる。
③ 逆相クロマトグラフィーにおける分離が可能になる。

実際に糖をビリジルアミノ化して分離した例をもう一つ示します。図-9はデキストラン加水分解物を 2-アミノビリジンでビリジルアミノ化後分析した例です。糖加水分解物は 5 量体から 25 量体まで分子量にしたがいまい、完全に分離され、またビリジルアミノ誘導体化糖は 1 pmol 以下でも高感度で蛻光検出できるので、高感度分析により糖分析の適用範囲が広くなることが考えられます。

次に、糖タンパク質の糖鎖構造研究への応用例を示します。二次元マッピング (糖鎖マッピング) と呼ばれるこの応用例は、未知オリゴ糖の糖鎖構造の推定に役立ちます。

その手法は、まず図-9のように、ビリジルアミノ (PA) 化デキストラン加水分解物 (標準サンプル) を逆相クロマトグラフィーおよび順相クロマトグラフィーで分離します。次に既知オリゴ糖を PA 化し、両クロマトグラフィーで分離し、その溶出位置から標準サンプルの溶出位置と比較し、グルコースオリゴマー単位を推定します。推定したグルコースオリゴマー単位 (溶出位置) を二次元座標軸上にプロットすることでその試料特有の座標点を求めることができます。そして、未知試料を PA 化して両クロマトグラフィーを行い、同様に座標点を求め、既知のオリゴ糖の座標点と比較することによって、未知試料の構造を推定することができます。

このように二次元マッピングは、PA-オリゴ糖を用いて、糖鎖の大きさと構造を高感度に分析できる手法であり、生体中の微量糖鎖の構造解析に有効であると考えられています。また HPLC での分離後、引き続いて NMR 等の解析で、糖鎖の正確な構造の決定を行うこともできます。

図-10 は PA-オリゴ糖の逆相および順相クロマトグラフィーによる分離例を示す。また 6 種類の PA-オリゴ糖について、その溶出位置から推定されるグルコースオリゴマー単位を表-3 に示します。
図-9 デキストラン加水分解物のビリジルアミノ化誘導体の分離
カラム：TSKgel Amide-80（4.6mmI.D.×25cm）
溶媒液：A：3％酢酸－トリエチルアミン（pH7.3）／
アセトニトリル＝35／65
B：3％酢酸－トリエチルアミン（pH7.3）／
アセトニトリル＝50／50
A→B（50％リニアグラジェント）
流速：1.0μl/min
温度：40℃
検出：FS（Ex.320nm, Em.400nm）
試料：デキストラン加水分解物のビリジルアミノ化誘導体0.5g/1.1μl

図-10 TSKgel ODS-80T_mとTSKgel Amide-80による
オリゴ糖のビリジルアミノ化誘導体の分析
カラム：A：TSKgel ODS-80T_m（4.6mmI.D.×15cm）
B: TSKgel Amide-80（4.6mmI.D.×25cm）
溶媒液：A：a：10mMリン酸緩衝液（pH3.8）
b：a＋0.5％ n-ブタノール
a/b（80/20）→（40/60）リニアグラジェント（80分）
B：条件は図-9と同じ
流速：1.0μl/min
温度：A：55℃、B：40℃
検出：FS（Ex.320nm, Em.400nm）
試料：PA－オリゴ糖
表 - 3  TSKgel Amide-80およびTSKgel ODS-80Tmでのピリジルアミノ化オリゴ糖の保持時間

<table>
<thead>
<tr>
<th>糖鎖</th>
<th>TSKgel Amide-80</th>
<th>TSKgel ODS-80Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>保持時間 (mL)</td>
<td>検定値2)</td>
</tr>
<tr>
<td>1</td>
<td>13.7</td>
<td>6.9</td>
</tr>
<tr>
<td>2</td>
<td>17.9</td>
<td>8.3</td>
</tr>
<tr>
<td>3</td>
<td>17.5</td>
<td>8.2</td>
</tr>
<tr>
<td>4</td>
<td>23.5</td>
<td>9.9</td>
</tr>
<tr>
<td>5</td>
<td>20.6</td>
<td>9.1</td>
</tr>
<tr>
<td>6</td>
<td>26.2</td>
<td>10.6</td>
</tr>
</tbody>
</table>

1) : Elution volume
2) : glucose unit calculated
3) : glucose unit referred from the literature

PA-オリゴ糖鎖の構造

1. G(β1-4)GN(β1-2)M(α1-6)G(β1-4)GN(β1-2)M(α1-3)
   G(β1-4)GN(β1-2)M(α1-6)M(β1-4)GN(β1-4)GN-PA

2. G(β1-4)GN(β1-2)M(α1-6)G(β1-4)GN(β1-4)M(α1-3)
   G(β1-4)GN(β1-2)M(α1-6)M(β1-4)GN(β1-4)GN-PA

3. G(β1-4)GN(β1-2)M(α1-6)G(β1-3)GN(β1-4)M(α1-3)
   G(β1-4)GN(β1-2)M(α1-6)M(β1-4)GN(β1-4)GN-PA

4. G(β1-4)GN(β1-6)M(α1-6)G(β1-4)GN(β1-4)M(α1-3)
   G(β1-4)GN(β1-6)M(α1-6)M(β1-4)GN(β1-4)GN-PA

5. G(β1-4)GN(β1-2)M(α1-6)G(β1-4)GN(β1-4)M(α1-3)
   G(β1-4)GN(β1-2)M(α1-6)M(β1-4)GN(β1-4)GN-PA

6. G(β1-4)GN(β1-6)M(α1-6)G(β1-4)GN(β1-2)M(α1-3)
   G(β1-4)GN(β1-6)M(α1-6)M(β1-4)GN(β1-4)GN-PA
6. おわりに

TSKgel Amide-80は、従来のアミノ型シリカカラムの欠点を克服した順相クロマトグラフィー用充填剤です。TSKgel Amide-80は、単糖、二糖類のみならず、オリゴ糖の分離に優れた分離を示します。

尚、TSK-GELには、糖分析用充填剤、充填カラムとしてTSKgel SugarAXシリーズ（ホウ酸錯体アミオン交換法）、TSKgel SCX（H⁺型）（イオン排除法）、TSKgel PW、PWXLシリーズ（ゲル通過法）、TSKgel NH₂-60（アミノ型－順相分配法）が揃っていますので、併せてご利用下さい。

文献
6) 果原幸俊、佐藤孝、海野益郎、東洋曹達研究報告、24(2), 35(1980)
8) Y. Fujiit et al., J. Chromatogr., 508, 241(1990)
10) H. Oku et al., Anal. Biochem., 185, 331(1990)